image.png

The emergence of AI-driven web automation through Large Language Models (LLMs) offers unprecedented opportunities for optimizing digital workflows. However, deploying such systems within industry’s real-world environments presents four core challenges: (1) ensuring consistent execution, (2) accurately identifying critical HTML elements, (3) meeting human-like accuracy in order to automate operations at scale and (4) the lack of comprehensive benchmarking data on internal web applications. Existing solutions are primarily tailored for well-designed, consumer-facing websites (e.g., http://Amazon.comhttp://Apple.com) and fall short in addressing the complexity of poorly-designed internal web interfaces. To address these limitations, we present Cybernaut, a novel framework to ensure high execution consistency in web automation agents designed for robust enterprise use. Our contributions are threefold: (1) a Standard Operating Procedure (SOP) generator that converts user demonstrations into reliable automation instructions for linear browsing tasks, (2) a high-precision HTML DOM element recognition system tailored for the challenge of complex web interfaces, and (3) a quantitative metric to assess execution consistency. The empirical evaluation on our internal benchmark demonstrates that using our framework enables a 23.2% improvement (from 72% to 88.68%) in task execution success rate over the browser_use. Cybernaut identifies consistent execution patterns with 84.7% accuracy, enabling reliable confidence assessment and adaptive guidance during task execution in real-world systems. These results highlight Cybernaut’s effectiveness in enterprise-scale web automation and lay a foundation for future advancements in web automation.